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a/as + a/az TO EVOLUTION 

GOVERNED BY ACCRETIVE OPERATORS* 

BY 

MICHAEL G. CRANDALL AND L. C. EVANS 

ABSTRACT 

Existence theorems for the equation du/dt +Au =.f(t), where A is an 
accretive operator in a general Banach space X, are typically proved by 
showing that limits of solutions of discrete approximations to the equation 
exist. Here the estimates required to show this convergence are exhibited as 
special cases of estimates relating solutions of difference schemes for alas + 
a/a.r to exact solutions. 

Introduction 

Let  X be a Banach space with the norm II II and A be an accret ive 

multivalued opera tor  in X. Let  T > 0,/" ~ L ~(0, T: X) ,  and consider the Cauchy 

problem 

(CP) 

du 
(DE) -d-f+ A u  ~ f ( t )  

(IC) u(0)=Xo.  

This problem has been studied intensively in recent  years,  especially as regards 

the fundamental  questions of existence and uniqueness of  solutions. 

If  no additional restrictions are imposed on X, the basic method used to 

establish existence results has been to show, under various assumptions ,  the 

convergence  of solutions of approximate  difference schemes tending to (CP). 

The first general result of this kind was established in [4]. Extensions  in several  

directions were obtained by numerous  authors,  e.g. [1], [8], [9], [10], [l 1]. 
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The uniqueness question is complicated by the fact that (DE) may not have 

any differentiable solutions even if there is a function u which is the limit of 

solutions of approximating difference schemes and which therefore ought to be 

the solution of (CP). One thus needs a way to interpret such a u as a solution of 

(DE). Toward this end two ideas have emerged. The first, already mentioned in 

[4] and developed further in [7], [10], [11], is essentially to define "solutions" of 

(DE) to be limits of solutions of approximating difference schemes. It must be 

proved that this notion is consistent with more classical ideas. The second idea, 

effectively developed by Benilan [1], [2], is to show that certain integral 

inequalities satisfied by limits of difference schemes are enough (together with 

Cauchy data) to uniquely determine them. Hence one can regard these 

inequalities as defining a notion of solution of the equation (DE). These two 

ideas are closely related and Benilan's uniqueness results provide an efficient 

way to prove that the notion "limits of solutions of difference schemes" is 

consistent with concepts of solutions of (DE) involving differentiability of u. 

The current paper was partly motivated by two considerations. First, S. 

Parter pointed out to the authors a relationship between the convergence proof 

of [4] and a discrete approximation of the differential operator O/as + O/ar. 

Secondly, in his interesting work [10] Takahashi showed how the arguments 

employed by Benilan in his uniqueness proof could be adapted to establish 

general convergence theorems. These arguments (called "Benilan's method") 

are not transparent; and, in the form used by Benilan and Takahashi, the 

domain of their applicability is not clear. Here we extract what seems to be at 

the core of these arguments in estimates that may be referred to in other 

situations. These estimates concern the degree of approximation by solutions 

of difference schemes to the exact solution of a boundary value problem 

involving the differential operator O]Os + a/Or. It is interesting that these 

estimates are not necessary for the proof of Benilan's uniqueness theorem. We 

also show how this result may be easily obtained from a simple argument again 

involving the differential operator O/Os + O/Or. 

While this paper is nearly self-contained, it presumes some familiarity with 

the subject. An introduction is available in [3]. Section 1 contains the statement 

of the main convergence theorem for (CP) and some preliminary reductions. 

Section 2 contains the main estimates related to the operator cg]Os + a]Or and 

the proof of the theorem of Section 1. Section 3 contains a new proof of 

Benilan's uniqueness theorem. Rather than interrupt the presentation in 

Section 2 with numerous comments about extensions and special cases, we 

have chosen to collect these in a separate place, the final Section 4. 
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1. Preliminary reductions 

Let f C  L ' ( 0 ,  T: X ) , x o C  X and 0 = tg < . . .  < t'N,,, = T (n )  be a partition of 

[0, T(n)]  for n = l , 2 , . - - .  I.et xL  f ~ _ X  for k = O , l , . . . , N ( n )  and n =  

1 , 2 , . - . .  Assume that 

(I.1) 
n r4 

t~  - t~  
+ A x ~ g f ~  for  k = l , - - . , N ( n ) .  

Denote by u, and f, the functions on (0, T(n)] whose values on ( t [ , ,  t [ ]  are x[  

and f~ respectively. We also set u,(0) = xg. Provided that maxk (t~ - t[t)----> 0. 

xg---,Xo, and f , - - * f  (in some sense) we may hope that u,---} u where u is a 

solution of (CP). In fact one has: 

THEOREM i.2. L e t A  beaccret ive , ( l . l )  hold, and 7">= T(n)  > T > O f o r l a r g e  

n. Let  f E L '(0, f': X ) ,  and 

l im[lf-[ , l lL, ,o.7, , , :x,=lim max ( t ~ - t T , , ) = 0 .  
n n l ~ k  ~ i N ( n l  

I f  lim, x,'~ =xoE~D(A) ,  then u =l im.  u. exists uniformly on [0, T] and u is 

continuous. 

Theorem 1.2 will be proved in Section 2 as a corollary of the developments 

there. Assuming that f = 0 and an additional stability condition is satisfied, 

Takahashi [10] proved the convergence assertion of Theorem 1.2. Kobayashi  

16] improved Takahashi 's  result by eliminating the stability assumption and 

obtaining more concrete estimates in a simpler way. Kobayashi 's  note came to 

the attention of the authors after most of the research in the current paper was 

complete. There is some minor intersection of our development  with that of [6]. 

The case f ~  0 seems genuinely more complex than the case f = 0, and our main 

point is not only Theorem 1.2 but its proof, which is of independent interest. 

To simplify notation, let x,,yk,fj, g~ ~ X  and y,.Sk > 0  be given for j = 

0, I , - - . , M  and k =0 ,  I . - - - , N .  Assume that 

xj - xj________~, + Ax~ ~ fj for i = I,. - �9 M, 
% 

(1.3) 

Yk--Yk-~_~ Ay~3gk  for k = 1 -- .  N. 

We seek to estimate ! !x i -yk  II- If a~.~-= I lx i -yk II, this problem reduces to 

studying recursive inequalities for the a,.k. These inequalities are obtained in the 

next lemma. A preliminary definition is required first. 
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DEFINITION 

Also 

(1.5) 

and 

(1.6) 

REMARK. 

M. G. CRANDALL AND L. C. EVANS Israel J. Math., 

1.4. Ifx, yEXand AER, A~0, then 

Ix, y]~ = A ' ( l l x  + Ay [I - I1~ II)- 

[x, y]§ = lim [x, y]~ = !nf [x, y]~ 
AJ, O 

[x, y]_ = lim [x, y ] ,  = sup [x, YL. 
A 1'0 k<O 

The convexity of A --~ ]Ix + Ay I] implies that [x, y]~ is nondecreas- 

ing in A, and this gives rise to the right-hand equalities of (1.5) and (1.6). 

LEMMA 1.7. Let  x, g, y, y, [, g E X and "r, 8 > O. Let A be accretive and 

(1.8) ( x - g ) + A x ~ / ,  ( Y - Y ) + A y g g .  
y 8 

Then 
< 8 "r 

(a) IIx - y l l  = - ~ - ~ U g - Y  II +7~-gllx-~11 + [x - y , / -  g]§ 

Moreover, i/ ~, >= 8, then 

(b) llx-Yll ~II~-~II + llx-~II +8[x - y,/-g]+. 

PROOF OF LEMMA 1.7. We recall that A is accretive exactly when y~ ~ Ax,, 

i = I, 2, implies [x, - x2, y, - y2]+ --- 0. Hence, by (1.8), 

[ [ ,,,-,1 N [ x - y , / - g l §  x - y , - -  7 -  ++ x -  ---g--I+ 

I( xl[ _l 
_-<[x-y,/-g]++~ -- yH - Ux-yil)+~(Hx-Y[l - [[x- y [[). 

Rearranging gives (a). (We used here the facts that Ix, y + z]§ ~ [x, y]+ + Ix, z]+ 

and [x, y]+ ~ Ix, y]~ for A > 0 and x, y, z E X.) Part (b) is obtained in a similar 

way. 

LEMMA 1.9. If  (1.3) holds and aj, k = II x, - yk II, then 

(1.10) a~.k < 8k + ~ j  aj.k_,+ 8k'y~ h ~'J + & at-,,k ~ "1- ok )'j + 8~ j,k 

/or h,.k = [X, -- Yk, ~ -- gk l+ or h,.k = II ~ -- gk II" 
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Lemma 1.9 follows at once from Lemma 1.7(a) and the estimate I[x - y ,  

f -  g]*l --< Ill - g II. The task then is to estimate solutions of (1.10). This is done 
in the next  section. 

2. The main estimates 

Given p a r t i t i o n s 0 = s o < s , < . . . < s u = S a n d 0 = r o < r j < . . .  < r ~ , = T o f  

[0, S] and [0, T] we form the grid A = {(si, r~): j = I , - . - , M  and k = I , . . . , N }  

on f l = ( 0 ,  S ] x ( 0 ,  T]. The quantities 3 ' J = s J - s j - , ,  8 , = r k - r , _ , ,  p . =  

max{y~,Sk: j = I , - . - , M ;  k = I , . . . , N } ,  S, T and the sets fl, l ) =  [0, S ] x  [0, T] 

and df l  = 1 ) \ 1 )  are all regarded as functions of A. Since A will be fixed for 

some time this dependence is not indicated explicitly now. Below j and k are 

understood to assume the values j = I , . .  - , M  and k ~ I , . . - , N  unless j = 0 o r  

k = 0  is stated explicitly. If h: f l ~ R ,  then hj.k = h(s~,r,) and ha: f l ~ R  is 

defined by ha(s ,r )=hj .k  on (s~-,,s,l•162 If h =ha,  h is said to be 

piecewise constant on A. Let  u : O ~ R  satisfy u. + u. = h ( s , r )  on fL If the 

mesh p. is small enough and u is smooth enough, then it is easy to see that the 

piecewise constant function e on A defined by 

(2.1) uj., - u i_,.` + uj.k - ul.,_ ~ = ei, + hi, 
�9 '/j 8, �9 ' 

is small. This is made precise below. Solving (2.1) for  uj., leads to 

a~ +__2.L_.  + J_Y_~_~_~h, + ej, ) (2.2) uj., = ~ u~-,.k 
�9 y~ + 8~ 3'~ + 8, "J"-t "/j + 8, ~ i. . 

and the relationship with (1.10) is obvious. 

LEMMA 2.3. Let  u,, u. E C(f~), u, + u. = h on f l  and u . ,  u .  E L ' ( I ) ) .  I f  

e = ea is defined by (2.1) or (2.2), then 

I e,.~ I ~ "Y~ II u,, II ~" + 8, II u~  II ~'.  

PROOF OF LEMMA 2.3. By assumption, u,j., + u,~.k = h~.k. On the other hand 

{ u,~.k - Uj'k--UJ-'" I = < , j " U , , " L "  

and 

I u,~., - u " ' - u J " - '  1 8 .  <-- ' ' )U'I)L" 

follow from elementary considerations and the result is established. 
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DEFINITION 2.4. 

given by 

Let to : [ - S, T] ~ R and h : l-I ~ R. Then G (to, h ): ~ ~ R is 

(2.5) G ( w , h ) ( s , z ) =  t o ( r - s ) +  t x o h ( a , r - s  + a ) d a  if r>=s 

ff h ( s - r + a , a ) d c t  if s ~ r .  

Also, H(to, h) is the piecewise constant function on A defined by H(to, h)i., = 

bj.k where 

(a) bj., & bi I.k , , = ~ + Yi bi k + hi.,, 
(2.6) Yi + G Ys + 8, 

(b) b i .k= to ( rk - s , )  if j = 0  or k = 0 .  

Informally, u = G ( w , h )  is the solution of u s + u , = h  on l ~ , u ( s , r ) =  

~o(r - s) on 01L We have not been precise about regularity requirements on to 

and h. Below, w will be continuous and in (2.5) the indicated integrals must be 

defined. According to (2.2) and Lemma 2.3, u = G ( w , h )  satisfies uj. ,= 

H(w,  h + e)j., where e is small if u is smooth and the mesh ~z is small. The main 

result of this section is an estimate of H(oa, h)  - G(w, h). Some definitions are 
needed first. 

DEFINITION 2.7. Let h : ~--* R. Then 

(a) ][h l [*=in f { l [g l lL .+l i f l lL . :gEL ' (O,S) ,  f E L ' ( O , T )  and [h(s ,z ) /  
<=g(s )+ f ( r )  a.e. on 1"1}. 

(b) If h E C( I ) ) then  [Ihl[**=[IG(O, lh 1)11,-',-,. 

Y denotes the completion of C(I)) under [[ II** and W is the completion of 

C(•) under [[ It*. 

RE~ARKS. ][ ]1"* is a weakest norm for which the corresponding completion 

Y has the property that G extends to a continuous linear mapping G: 

C([ - S, T]) • Y ~ C(1")). A calculation shows immediately that ][ II ** --< II fl* 
on C(~);  so W C Y  with a continuous injection, and G : C ( [ - S , T ] ) •  W 

C(~)  is defined and continuous. Moreover the L '(~) norm is weaker than 

11 11"*, as is easy to see, and It h ]l* =< min (S, T)II h II,-" for h ~ C(1)). Thus, 

c ( ~ )  c w c Y c L '(f~) 
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where each injection is continuous and has dense range. More precise 

characterizations of Y and W need not concern us here. 

The main estimate is 

THEOREM 2.8. Let  to E C([ - S, T]), and h :1)---> R be piecewise cons tan t  on 

A. I f  O5 E C2([ - S, T]), h E C-'(I)) and h(O, O) = 0 then 

I1H(w, h ) - G (w, h) IlL-,n, _--< 2 [I to - o5 [[L~-S.T, + 2 I] h - h [1" + ][ h - hall* 

+/.t ((T + s)llos"ll~, s~,+ 211OS'IL~,-S.T, 

+ 2llh IIc:,.,(1 + T + S):). 

The proof of Theorem 2.8 is postponed while some consequences, including 

Theorem 1.2, are obtained. The precise coefficient of ~ above is not of much 

interest and is not optimal. Its nature will be clear when the proof is given. 

Let I be a partially ordered set and {A(i): i E I} be a net of grids. S,, T~, 1"1,,/,,, 

etc., and operators Hi are associated with A(i), as S, T, /~, ~ were associated 

with A above. The norm I] II * and space W over 11, will be denoted by H II * and 

W,. Let also So, To > 0 and 1~o = (0, Sol x (0, To] be given. 

COROLLARY 2.9. Le t  So>=S,, To>=T~ and t o ,~ C( [ - S , ,T~ ] )  for  i C L  Le t  

h~: EL ---> R be piecewise cons tan t  over A,. I f  h E Wo, to E C([ - So, To]) and 

then 

l i ra  ~ ,  = l i m  [I h, - h II * = l i m  [[ ~o - ~o, II L ~ , s , ~ , ,  = 0 

lim [[ Hi (w,, h,) - G (w, h )IlL ~,n,, = O. 
1 

PROOF OF COROLLARY 2.9. By the remarks following Definition 2.7 

I IG(w,h)-G(w, ,h , )[IL~r = I I G ( w - w , , h - h ; ) l l L ~ , n , ,  

<= II o, - ~ ,  ll L- ,-s ,  ~-,, + Ilk - h, ll * 

and the right hand side tends to zero by assumption. Thus, it is enough to show 

that ]]Hi(w, ,h,)-G(w,,h,) l l i~,n,~ tends to zero. Theorem 2.8 and the triangle 

inequality imply that 

II H,(w,, h,) - G(w,, h,)II L=,,,o <- 2 II ,,, - ,,.,, II L- , -s ,~o 

+21[w - o5 I[ L=,-so.ro, + 2 H h - h; I1"+ 2]]h -/~l[* 

+ II I; - hA, II * + ~ , K ( I I  O5 II c2,-~o.To,, + II h II c2,~,)  
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where K is independent of i, provided that o3 (5 C2([ - So, To]),/~ (5 C~(,0o) and 

/~(0, 0) = 0. The limit over I of every term on the right hand side above in which 

an i appears is zero. For the term I1~;-h~,ll*, this follows from 11 I1",= < 
min(S~, ~)11 II,-,-0, the uniform continuity of /~, and /z,--*0. The other terms 

tend to zero by assumption. Thus 

l i m s u p  ][ H~ (~o,, hi )  - G(oJ,, h,)II L-,,,o ~ 2 II o~ - ~ II L',,-S~To,, + 2 II h - h II *o. 

Now o3 (5 C2([-  So, To]) and/~ (5 C2(1~o) with/~(0, 0) = 0 can be chosen so the 

right-hand side is as small as desired, and the result is proved. (The density of 

such (aS,/~) in C ( [ -  So, To])x Wo is an exercise.) 

PROOF OF THEOREM 1.2. For m,n  > 0 define 

~,,., = {(tT, t~): . /= 1 , . . . ,  N(m);  k = 1 , . . . ,  N(n)}. 

The functions W""(S,T)= ]]U,.(S)--U.(T)II, h " ' " ( S , r ) =  t][,.(S)--f.O')[] are 

piecewise constant on the grid A,.,n on l~.,.. =(O,T(m)]• Now 

H,... (w, h ) = 0 if oJ _-> 0 and h _- 0. It follows from this and Lemma 1.9 that if 

w m , n  m n m n = ( t i . t k )  = IIx, -xk l l  < ~"'" (tZ - t 7 )  
(2.10) 

for j = 0  or k = 0 ,  

then 

(2.11) w"" (s, T) = Il u.,(s ) -  u.O')ll <-_ H.,.. (,o"", h"")(s,  ~.). 

Analogously to Kobayashi [6], if we take 

fo IT-s~ ,o"" 0 - -  s) = ( l l / (~)l l+llyl l)d~+Ztltx~-xl l+llx~-xl[)  
( 

(212) t + I l l - / . .  II, ,,o.~,..,:,. + I I / - to  II,.,oT,.,:x, 
/ 
twhere  x E D(A ) and y (s Ax, 

then (2.10) is satisfied. This follows from a simple induction once we notice that 
for y (5 Ax 

[]x"k-x]' < [xT'-x +(t~-t"k- ' )(  f: + t ~ - t ~  , Y) I 

<--Ilxz-,-xll +( t :  - t Z - , ) ( l l / Z  II + Ily II) 

<-Ilx~-,-x l[ + (llf(~)ll + Ilyl[ + Ilf(a)-f.(c,)ll)dc, 
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where the first inequality is due to the accretiveness of A. Thus 

I Ix~-x~  II--< I I x ~ - x  II + U x - x ~  II 

--< (llf(,~)ll + Ily II)da + 211x~, - x  II + I I f - f .  H,.',o,T,.,:x,. 

Next observe that 

I h- ,"  (s,  ~-) - I l f ( s )  - f ( 7 )  II I --< II fm ( s )  -fts)II + II f .  (~-) - f ( ~ )  II �9 

Thus Uh m'"- IIf(s)-f(~)llll*.-,0 as m,n-->~.  Applying Corollary 2.9 to 
(2.11) then yields 

lira, sup II u . ( s ) -  u.(~)U --< lim, sup Hm.. (to"'", hm'*)(s, ~-) = G(to, h )(s, ~-) 

uniformly on 0 < s, ~- _-< T where 

fo I'-sl ,,,(~-- s) = ([If(a)l[ + Ily II)d~ +4l lXo- x I1 

and 

h(s, ~') = [If(s) -f(~')l[.  

Since G(to, h)(t ,  t ) =  411 x 0 - x  II, go ~ D ( A )  and x E D ( A )  is arbitrary, it fol- 

lows that II u . ( t ) -  u,(t)II--, 0 uniformly on 0 =< t =< T and u = lim u, thus exists 

uniformly on [0, T]. Then if 0 =< s < r =< T we also find 

fO T-$ Ilu(s)-u(~)[[ ~ (llf(a)ll + fly [[)da § 11 

L 
$ 

§ I I f (~ -  s +ct)-f(a)Olaa 

for y E Ax. The continuity of u follows easily. Moreover, one sees how the 

modulus of continuity of u may be estimated in terms of f and i n f{ ( r -  

s)llYll +4 [ Ix0 -x  I1: x E D ( A ) , y  E ax} .  (One may replace 4 by 2 in this 

expression.) For example, if Xo E D ( A )  and f is of bounded variation, then u is 
Lipschitz continuous. 

PROOF OF THEOREM 2.8. The main ingredients in the proof are the next two 
lemmas. 

LEMMA 2.13. Let to E C ( [ -  S, T]) and h:II--->R. Then [[H(to, h)llL-= < 

II,o ILL-+ II h~ll*. 
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P r o o f  o r  LEMMA 2.13. First,  H(to, h)=H(to ,  O)+H(O,h) and, by the de- 

finition of  H, the values of  H(oJ, 0) are convex combinat ions  of  the values of  o~. 

Thus II n( to ,  0)II L'----< I1" II L'. It remains  to see that II H(0,  h)ll L | =< II h~ I1". N o w  

(2.14) IIh~ll* = inf{y,/3,  + " "  + 3,~,/3M + (~,,(, + . . .  + 6NK,,: 

IhJ.k I ----</3j + Kk and /3;, Kk -->-- 0}, 

as is easy to see. Now let gj.k = /3j + Kk => [hj.~ I and 

b;.~ = y,/3~ + �9 �9 �9 + yi/31 + 6~K, + �9 �9 �9 + 8kKk. 

Then b=H( to ,  g) provided to(zk--Si)=bi.k for . / = 0  or k = 0 ;  that  is, b 

satisfies (2.6) (a) with hj.k replaced by gi.k. Since gs.k => I hi.k I, and/3~, Kk => 0 (SO we 

may take to = 0), we have b = H(to, g) >= H(O, I h I) -> H I ( 0 ,  h) l  by the order  

preserving proper ty  of H. Thus,  

I IH(O,h) l l , . -<=  y,t3, + . . .  + y~F3~ + ~,K, + . . .  + ~ K ~  

and, in view of (2.14), the proof  is complete .  

LEMMA 2.15. Let to E C ( [ -  S, T]), h EC(I))  and u = G(to, h) satis[y the 
conditions of  Lemma 2.3. Then 

II n(~o, h ) -  a( to ,  h)ll ,-_-< #(TII  u.~ II , .-+ S II u ,  II , - +  II u, II L-+ II uT II L~) �9 

PROOF OF LEMMA 2.15. Le t  e be the piecewise cons tant  funct ion on A 

defined by (2.2). Then,  by definition, 

(2.16) H(to, h)  - G(to, h)a = H(0,  e). 

On the other  hand,  by L e m m a  2.3 and L e m m a  2.13, 

(2.17) II H(0,  e)IlL | =< II e II* 

-< (y ,~+"""  + y~,)ll u,, II-" 

+(8 ,  ~ + ' '  + 8~)11 u.  IlL- 

_-</.t (S II u,, IlL- + T II u~, ILL| 

Fur the rmore  we have 

(2.18) {I o(o~, h ) , -  O(o~, h)ll L-<= ~(11 u, II , - §  II u, II L-) 

since II u, II L-+  II u, II L- is a Lipschi tz  constant  for  u = G(to, h).  Combining 
(2.16)-(2.18) yields the lemma. 
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END OF PROOF OF THEOREM 2.8. Let  03 E C([ - S, T]), /~ E C(fl)  and u = 

G(03,/~) satisfy the assumptions of Lemma 2.3. Then 

II n(to,  h) - G (to, h)ll,.-_-< II n(co - 03, h - /~ )  IlL-+ II G (,,, - 03, h - ~)IlL- 

+ tl H ( &  ~ ) -  G ( ~ ,  ~)I I , -  

--< 2 II o~ - o~ J[ , -  + II (h - a ) ,  II * + II h - /~  II * + II n(03,  fi) - G ( &  fi)II L" 

--< 211~o- 03 ILL-+ 211h- ~11" + I l a -  a, ll* 

+ ~(S II u,, II , - +  TII u~ II L-+ II u, II L-+ II u, II L-) 

by Lemmas 2.13 and 2.15. I f  03 ~E CZ([ - S, T]),/~ E C2(~) and/~(0,0) = 0, then 

u = G(o3,/~) has the required regularity, and the result follows from examining 

the dependence of the derivatives of u on o3 and/~, which task we leave to the 

reader. The theorem is proved. 

3. Remarks on Benilan's uniqueness theorem 

According to Benilan [1], if A is accretive, ~ is an interval, and g 

L~o~(~: X),  then v is an integral solution of v'+ Av ~ g on ~ provided that 

v E C ( ~ :  X) and 

f' IIv(t)-xll-  II ~ ( s ) - x  II = [v(r)-x,g(r)-y].dz 
(3.1) 

whenever x~_D(A), yEAx, s,t~_5~ and s ~ t .  

The following result was proved in [1]. 

THEOREM 3.2. (Benilan) Let the assumptions of Theorem 1.2 be satisfied 

and u = l i m , ~  u, with the notation of Theorem 1.2. Let g E L J(0, T: X). If v is 

an integral solution of v' + Av ~ g on [0, T], then 

(3.3) ] l v ( t ) - u ( t ) [ [ - I I v ( s ) - u ( s ) l l  <= [v(r)-u(r),g(z)-f(r)]+dz 

[or O<- s <=t <_ T. 

We sketch a proof of this result which, while similar to Benilan's, exhibits the 

nature of the situation more clearly. First observe that (3.1) is equivalent to 

(3.1') d l l v ( t ) - x H < - [ v ( t ) - x , g ( t ) - y ] +  in ~ ' ( (0 ,  T)) 
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for y ~ Ax.  Setting 

x = x } ' , , y = f ~ + - -  

in (3.1') and using that 
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x~- , -xT ,  
, 8~ = t~ - t~_, 8~ 

[x,z + w]§ <=[x, z L  + [x, w], 

for all x, y, w E X and A, 8 > 0 leads to 

a l l  " x" (3.4) v ( t ) - x ~  II =<[v ( t ) -  ~ , .g ( t ) - f~ l .  + [ v ( t ) -  x~.(8~) " " - ' (x~ -x.-,)l.~" 

= [ v ( t )  - x~ ,  g ( t )  - f ~ l ,  + II ~( t )  - x~_, l l -  II v ( t )  - x~ II 
8~ 

f o r A > 0 .  Let 

w.(t, s)  = II v ( t ) -  u.ts)ll, 

(3.5) h.(t,  s) = [v(t)  - u.(s) ,  g ( t )  - f. (s)]~, 

g.(t,s) =llv(t)-x~ll-IIv(t)-x~-'ll t~_,<s <-_tL 
8"k 

Now (3.4) may be restated as 

a 
(3.6) a---[ w.(t,  s) + g.(t,  s) <- h.(t ,  s) in ~ ' ( (0,  T) x (0, T)). 

IsraelJ. Math., 

We have w.r v(t)-uts)ll  uniformly, and 

h.(t,  s)--)  [ v ( t ) -  u(s) ,  g ( t ) -  f(s)]~ in W((0, T) x (0, T)) 

(W is defined in Definition 2.7). To evaluate lim. g. (t, s) we use the next lemma. 

LEMMA 3.7. Let  f tC_R N be open and O : f l x X - * R  be continuous. Let  

T > 0 ,  0 = tg < t? < . . .  < t~ .~= T be a sequence o f  partitions o f  [0, T], and 

{u.} be a sequence of  strongly measurable functions on [0, T] such that 

lira._| u. = u E C([0, T]: X )  holds uniformly on [0, T]. I f  l im,-~max, ,k ,m,~ 
(t~ - t~_,) = 0 and 

g.(z,  s) = ~b(z, u . ( t ~ ) ) -  0(z, u.(t~_.)) for z E 1), t~_, < s <= t~, 
t~ - t ~ _ ,  

then lim.g. (z, s) = (alas) 0 (z, u(s))  in ~'(12 x (0, T)). 
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PROOF OF LEMMA 3.7. Let us first assume that q~(z,x) = 0(x) depends only 

on x E X. Now v~ = 0(u.)  converges uniformly to the continuous function 

v = O(u), and g.(s) = (v.(tD - v.(tL,))/(t~ - tL,) on (tL,,  t~]. Next observe 

that g. is the derivative of the function w.(s) which is linear on (tL,,  t~] and 

has the value v,(t~) at t~. Clearly IIW. IIL'=<llV. IIL" and w,--*v=d/(u)  
uniformly. Since g, = w', it follows that g, --. v' in ~'((0, T)), and we have the 

result. Moreover, observe that 

(3.8) Iff g.(s)4,ts)dsl = [forW'.(s),(s)ds[ = [forw.(s)~'ts)dsl 

--< II w. [ [ :U~' l l~ ,  = [I r : [ [  ~ '  [) ~,, 

for ~k ~ ~'((0, T)). To obtain the general result, observe that 

lira fa (forg'(z 's)q~(z's)ds) dz= fa (lira foTg.(z,s)q~(z,s)ds)dz 

for ~ ~ ~(f~ x (0, T)) by the case treated above and (3.8) (which allows the 

interchange of the integral over fl and the limit on n). 

To complete the proof of the theorem, we use Lemma 3.7 to pass to the limit 

in (3.6) to find 

(3.9) O[[v( t ) -u (s )U + O H v ( t ) - u ( s ) [ [ < [ v ( t ) - u ( s ) , g ( t ) - f ( s ) ] A  

in ~'((0, T) x (0, T)). It is only an exercise to integrate the inequality (3.9) and 
let A ~ 0 to find (3.3). 

REMARK. The reader may recognize the relationship of Lemma 3.7 to the 

general question of when u.--* u uniformly and 8, > 0, 6, ~ 0  uniformly 

implies (u , ( t ) -u , ( t -8 , ( t ) ) ) /8 , ( t ) - -*u ' ( t )  in ~((0, T)). Even if u, = u is 

independent of n and u is absolutely continuous, this does not hold in general. 

REMARK. If A is accretive and u, v are strong solutions of u'+ Au ~ f, 
v '+ Av ~ g, one finds (3.3) directly. If A is quasi-accretive in the sense of 

Takahashi [10], one finds instead 

(3.1o) 

~t l[ v( t ) -  u(s)ll+ ~s l[ ~ ( t ) -  u(s)H 

~_ [ v ( t ) -  u(s), g(t)]+ + [v(t )  - u(s ) ,  - f ( s ) ] + .  
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This suggests the appropriate notion of integral solution in this case, as well as 

the (verifiable) version of Theorem 3.2. Similarly, one can discuss the case 

where A + vI  is accretive for some v E R. 

4. Remarks, extensions and special cases 

REMARK 4.1. (On Lemma 1.7). If A is only quasi-accretive in the sense of 

Takahashi [10], then Lemma 1.7(a) remains valid if [x - y, [ -  g]+ is replaced by 

[x - y, f]+ + [x - y, - g]+ =< II f II + II g II- Lemma 1.7(b), however,  holds only 

when A is accretive. Kobayashi  [6] also proved Lemma 1.7(a) in the form valid 

for  quasi-accretive operators.  In any case, this inequality is suggested by 

Takahashi [10] who stated the result for  3' = & If v ~ R and A + vI  is accretive,  

writing (1.8) as 3"-1(x - g ) +  A x  + ux ~ f + ux, etc., and using Lemma 1.7 for 

(A  + uI) yields 

1 -  v3'8 ~ < 8 3' 
3' + 8 / [ Ix  - Yll = 7~-g[[  g - Y II + ~7-~[ [x  - Yl[ 

(4.2) 
3'8 

+ -~--~ [x - y , f - g ] + .  

REMARK 4.3. (On Lemma 1.9). If A is only quasi-accretive or A + vI is 

accretive,  then Lemma 1.9 changes in accordance with Remark 4.1. 

REMARK 4.4. (On schemes for us + u, = h). One may ask for what coeffi- 

cients does the scheme 

(4.5) us.k = O,.kus-,, + fl,.kU,.k-, + rh.kUs-,.k , + K,.khs.k 

represent  a difference approximation for us + uT = h. If g.k,/3,,k, r/s.k----0 and 

0,.k + fl*.k + rh.k = 1, the conditions are (g.k + ~7,.k)3', = (/3,.k + r/j.k)& = K,.k. One 

solution of this is r/i.k = 0, 0,.k = &/(3', + &), /3,.k = 3's/(3'~ + &), K,.k = 

y,&/(y, + &). This corresponds to the development  in Section 2. If 3', > &, a 

second solution is ~,.k = &/yj, 0,.k = 0,/3s.k = (3'~ - &)/3',, K,.k = & which corres- 

ponds to Lemma 1.7(b) in the same sense that the previous scheme corresponds 

to Lemma 1.7(a). The other possibilities are convex combinations of these 

extreme ones. It is curious that the nonsymmetr ic  extreme Lemma 1.7(b), used 

in [4], was discovered before the symmetric extreme. The analysis of Section 2 

can be adapted to the general case (4.5). 

REMARK 4.6. (On Theorem 1.2 if A + vI. is accretive). Theorem 1.2 remains 

valid if A + vI  is accretive for some v E R. One way to prove this would be to 

treat the inequalities 
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(4.7) 1 - v~'J~ ] < '~k + ~ + yj + ~k ) a~.k = YJ + ~k ai-,.k Ys + ~k ai'k- J yj + 8k hik, 

via comparison with solutions of the equation us + u, - vu = h as was done for 

v = 0. However ,  just as the vu term may be transformed out in this equation by 

changes of variables, a similar device works for (4.7). Set, for  example, 

Then (4.7) becomes 

(4.8) 

bj.k = (1 - v y , ) ' "  �9 (1 - vyj) aj.k 

gj., = (1 -- V T , ) ' ' "  (1 -- V%) hj.~. 

< 6k bi-,,k -t 3 ' ~  bj,k-~ + 7"8k 
bj.k = 3' * + ~5~ y * + 8k y* + ak g~'*' 

.),,* = .),jl(1 - .),,v). 

Or, using b~.k = (1 - ( v / 2 ) y 0 . . . ( l  - ( v /2 )y j ) (1  - ( v / 2 ) 8 , ) . . . ( 1  --(V/2)Sk)aj.k, 

etc., one obtains (4.8) with 8 Y ~ = 8 ~ / ( l - ( v / 2 ) S k )  in place of ~Sk and y ~ =  

yk / (1 -  (v/2)yk). One then checks that the change of partition represented by 

the new step sizes does not effect the convergence in L '  assumed in Theorem 

1.2. This point is discussed in more detail in Remark 4.9 of the Technical 

Summary Report # 1541, Mathematics Research Center, University of 

Wisconsin-Madison (which has the same title and authors as the current  paper). 

REMARK 4.9. (The case to(t) = K I t  I + b). Let  a~.k satisfy (I.10) and ai.k =< 

K I t~ - sj I + b if . /= 0 or k = 0. If h is piecewise constant on A, then 

(4.10) aj.k <= H(to ,  h )s.k = H(to,  O)j.k + [Ih H* 

where to(t) = K ] t ]  + b. By Theorem 2.8, 

tt H(to, 0) - G(to, 0)I] z| < 211 to - o3 II L | p .((T + S)]] o3"t] L | + 211 o3' ]I ,-') 

for  o3 U C 2 ( [ - S ,  T]). Reviewing the proofs,  it is enough to have 

L ' ( [ -  S, T]) and in fact 

O3" 

(4.11) ]H(to,  O),., -G(to ,  O)~., I ---- 211 to - O3 1[ L - +  t ~ ( ( T  + S)II o3"{1,.-), 

since the term 2/z IIo3'[1~.- only arose from the variation of G(to, 0) over  a 

rectangle of the grid (that is, from the terms II u~ II L- and I[ u, II L- in Lemma 2.15). 

With to(t) = K I t I + b and o3 defined by o3(0) = b and 
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we have 

o3'(t) = t KKt for I t l ~ A  

sign t for I t l  >A 

211,o- o3 ILL', . . . .  ,+ ~ ( T  + S)IIo3"IIL-, . . . .  ,=  K/A / +~(TA + S))x 

provided ;t > 0. For A = X/p.(T + S) we obtain 

(4.12) I n ( t o ,  o),., - G(to,0),.k I =< 2K V ' - ~  S. 

Combining (4.12), (4.11) and (4.10) leads to 

(4.13) 

= g IsM -tNI + b  + 2 K ~  ~ + t,~+ IIh I1". 

O f  course, (4.13) holds with M, N replaced by j, k and IIh I1" by II h II w,o.,:x,o.,,j,. 

Thus our results are, in this special case, as sharp (except for the constants) as 

those obtained by other methods. (Compare, e.g., [3], [4], [6]. Of course, these 

simple estimates are decisive only when [ = 0 in Theorem 1.2.) One can also 

consider other explicit choices of to. 

REMARK 4.14. If M = N , ~  = g , , x ,  = y , ,  y, =Sj in (1.3), then a,.k = IIx,-x~ll 
in Lemma 1.9. It follows that an estimate on a,.o, j = I , . . . , M  implies an 

estimate on a,.k for all j, k. If, e.g., a,.o _<- K I tj i, t, = 3', + " '"  + 3',, we could use 

Remark 4.9. However, the result is not good enough, since the fact that a,., = 0 

has been ignored. To use this, observe that aj.k --< b,.k for k _>- j _>- 0 where b,.k is 

defined for M - k _ - > j _ > - 0 b y  

bj.k= Tk b j - , . k +  ~/i bj .k- ,+ 71T~ gi.~ 
3 I, + ~/k 3 ~, + ?k ?j + ?k 

for M>k~ j> - l ,  
(4.15) 

bo.k = to(t,) => ao.,, 

b , j = 0  if M-_>j_->0, 

provided that g~.~ => h,.~ = {[~ - f~ II f o r  M > k >-- j => 1, to E C ( [ 0 ,  T] ) ,  and to(0) = 

0. On the other hand, if ~ is defined by gu = 0, gk.~ = - g~.~ if M => k _>- j => 1 and 

O3 denotes the odd extension of to to [ -  T, T], the solution of (4.15) is exactly 
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b~,~ = H(a3,g)j.k. Assuming, for example, to( t )= K t  then 03(t)= K t  and we 

conclude 

Jlxi -x~ II --< H(t~, g)~,k _-< IIg II w,o.,,,x,o.,~, 

§ G(o~, 0) § 2 II o~ - 03 II c',,-T.T,, + ~ II 03"11C"-T.T]' 

for o3 ~ C2([ - T, T]), where gs.k = Ill, -/~ II, k >-_j and gj.k = -g~.~. Setting 

03 = K t ,  we find 

II x, - x~ U --< r ,  II/, II § " ' "  + ~, I1~ II § r ,  II/, II + " "  + ~ II/~ II 
(4.16) 

+ K( t~  - tj) 

for k => j, since the terms involving 03 vanish. This is a reflection of the fact that 

b~.k = K ( t k  - tj) + y,fl, + . . .  + Vj[3j + Y , n ,  + "'" + V~*l~ 

satisfies the recursion part of (4.15) exactly if gj.k =/3j + r/~. It is interesting how 

sharp our estimates are in this case. These considerations show how the simple 

but important inequality [6, eq. 3] discovered by Kobayashi is naturally 

suggested by our methods and how to generalize to other choices of to. 

REMARK 4.17. (On existence of approximate solutions). Let v E R and 

A + vI  be  accretive. Set 

{y E X: lim inf dist(R(I + aA ),x + ay) } S ( A  ) =  ~ o  A = 0  for x ~ D ( A )  . 

Then if [ ~E L ~(0, T: X ) , / ( t )  ~ S ( A  ) a.e. on [0, T],  xo E D ( A )  and e > 0, there 

are sequences {x~}7=0, {/J}7-,, {yJ}7-, such that (1.3) holds, y, + . . -  + y,, = T, 
O < y j < e  and 

2 f" l l~- / (~) l ld ,+ <,~ 
j = l  J-I  

w h e r e  t, = ~,, + . . -  + ,/,. Kobayashi [6] p r o v e s  this  if 0 ~ S(A)  and 1(t ) - - -  0. It is 

not dit~cult to generalize his argument to the current case. It follows from 

Kobayashrs result and a theorem of aenilan [1] that if a + ,,~ is accretive then 
+ ,,r is m - a c c r e t i v e  if  and only if  S(A)  = X (our def in i t ion o f  SCA) differs  

from Benilan's). It is straightforward to prove this directly t,y our methods, 
without the notion of "bonne solutions". 

REMARK 4.18. L. Evans [5] has applied arguments of the type employed 

here to study the equation d u / d t + A ( t ) u  9 [ ( t )  where A ( t )  has an " L ' -  
modulus of continuity". 
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